Moles & Stoichiometry Cheat Sheet

Calcula	ting Molar Mass	Calculating Percent Composition							
1.	Write out formula of compound	1. Calculate the molar mass of the							
2.	Determine number of atoms of each	compound							
	element present	2. divide the mass contribution of each							
3.	multiply number of atoms of the	element by the total molar mass							
5.	element by the atomic mass of the	3 multiply by 100 to make a percent							
	element	5. manipiy by too to make a percent							
4	add up the values just determined for	Note: total of percents should equal 100%							
т.	all of the elements present in the								
	compound								
	x by molar mass	y by Auggadro's #							
Mad									
17103									
		(atoms,							
	÷ by molar mass	÷ by Avogadro's # molecules,							
formula units)									
١.	Change % of each element to grams of	I. calculate the empirical formula first							
	each element (if no sample amount is	2. calculate the molar mass of the							
_	given assume 100 g)	empirical formula							
2.	convert grams of each element to moles	3. take the molar mass of the molecular							
	of each element by dividing the grams	formula (given in the problem) and							
	by the molar (atomic) mass of that	divide it by the molar mass of the							
	element	empirical formula. This will equal the							
3.	divide all molar values by the smallest	number of times the e.f. is in the m.f.							
	molar value (to establish lowest whole	4. distribute the number attained through							
	number ratio)	the empirical formula							
4.	if all values are not whole numbers,								
	multiply all by a whole number factor	<i>Example:</i> $2(C_2H_5) = C_4H_{10}$							
	to make the values whole (ex. 1.5 and 1								
	should be multiplied by 2 to get rid of								
	the $.5 = 3$ and 2)								
5.	plug values in with the element they								
	represent								
Calcula	ting the Formula of a Hydrate	Naming a Hydrate							
1.	Determine the mass of water in the	1. write the name of the ionic compound							
	hydrate by subtracting the mass of the	2. use a prefix for the number of water							
	anhydrous from the mass of the	molecules (see below)							
	hydrate (if necessary) -OR-convert %'s	3. write "hydrate" after the prefix							
	into grams by assuming a 100g sample	······································							
2	convert grams of each into moles of	1 = mono 2 = di 3 = tri 4 = tetra 5 =							
2.	each by dividing by molar mass	penta							
2	divide the moles of water by the moles	6 = hexa $7 = henta$ $8 = octa$ $9 = nona$ $10 - 10$							
5.	of the anhydrous to determine the	deca							
	number of moles of water in the								
	formula	Example: Copper (II) sulfate pentabydrate							
л	write the formula of the aphydrour								
4.	followed by a dot then the # of males								
	of water and "H.O."								
	Example: CuSOA . 54.0								
	$Lxainple: Cu3O4 \cdot 3\Pi_2O$								

Stoichiometry – Interpreting Chemical Equations										
"ANY TIME YOU HAVE MOLE AND MOLE IN THE SAME FRACTION ALWAYS LOOK										
AT THE BALANCED CHEMICAL EQUATION"										
Stoichiometry is used to convert from moles of one substance to moles of a different										
substances										
 These substances are related by their mole ratios established by the balanced 										
chemical eq.										
Mala to Mala Conversion										
1	start with a balanced chemical equation	# mole Substance "A" # mole Substance "P"								
1. 2	start with a balanced chemical equation	# mole Substance B								
2.	multiply by the mole ratio with the	# mois substance A								
5.	substance you want to get "B" on top	$\Gamma_{\rm constraint} = 211 + 0 \rightarrow 211 + 0$								
	of the substance you are getting rid of	$example: 2n_2 + O_2 \neq 2n_2O$								
		#			2 mole	ы	0			
1	A insert the corresponding coefficient	# mois O_2			2 11015	$2 \text{ mols } H_2 O$				
ч.	from the equation to the ratio for each									
	substance									
Molert	o-Mass Conversion									
1	start information is the same but you		Fyam	nle• 2	$H_{1} + O_{2} \rightarrow$	24	1.0			
	are asked to find grams of new		LAUIT	<i>pic.</i> 2		21	120			
	substance	# mc	$l_{1} O_{2}$	2 m	ols H ₂ O	18	o H₂O			
2	follow steps listed above	<i>"</i> me	15 02	1 m	$\frac{0.01120}{0.00}$	$1 \mod H_2O$				
3	multiply by the molar mass of the new			1 111			1101 1120			
5.	substance to get the grams of the new									
	substance									
Mass-to	o-Mass Conversion									
1.	start information given in grams and	Example: $2H_2 + O_2 \rightarrow 2H_2O_1$								
	asked to find grams				- 2 - 2 -		-2 -			
2.	3 step problem, grams substance A to	$\# g \Omega_2 = 1 \mod \Omega_2 = 2 \mod H_2 \Omega = 18 g H_2 \Omega_2$				18 g H ₂ O				
	moles sub. A. mole ratio, mole of sub.	0	32 g	0 ₂	1 mol O ₂		1 mol			
	B to grams sub. B		8	- 2			H ₂ O			
3.	divide by molar mass, mole ratio,		Į		I		2			
	multiply by new molar mass									
Determ	nining the Limiting Reactant	Deterr	nining th	e Amo	ount of Exc	ess	Reactant			
1.	put amount of each reactant into moles	1.	Convei	rt the i	moles of th	ne li	miting			
2.	divide the moles of each reactant by its	reactant into moles of the excess								
	coefficient in the balanced equation.	reactant. This will equal the number of								
3.	the small amount is the limiting	moles USED								
	reactant; the other reactant(s) will be in	2.	subtrac	t this i	number of	mo	les from the			
	excess	total # of moles available of the excess								
	$N_2 + 3 H_2 \rightarrow 2 NH_3$	reactant. This will equal the AMOUNT								
	2 moles of $N_2/1 = 2$	OF EXCESS REACTANT LEFTOVER								
	3 moles of $H_2/3 = 1$ H_2 is limiting	3. convert this to grams by multiplying by								
Remer	mber, the limiting reactant determines the		molar ı	mass						
amount of product that will form!										
Calculating Percent Yield										
1. determine the theoretical yield by using your stoichiometry and a mass-to-mass conversion										
2. divide the actual mass (given to you or measured in a lab) by the theoretical mass										
(calculated with stoichiometry)										
3. multiply by 100 to make a percent										